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ABSTRACT

Formation of Bahamian Pleistocene eolian
ridges, and the phreatic dissolution caves (flank margin
caves) within them, is linked to Quaternary sea-level
history. Petrologic analyses of cave and surface rock
samples from five Bahamian islands reveal that the
dominant allochems in the rocks that comprise the
cave walls are peloids and bioclasts, and 0dids are
conspicuously absent. Samples from measured sec-
tions of outcrops located on the surface of the eolian
ridges reveal that the ridges can be classified into four
types based on allochem composition:
peloidal-bioclastic, odlitic, peloidal-bioclastic transi-
tional upward to oflitic, and peloidal-bioclastic
unconformably overlain by odlitic.

Most cave wall samples are moderately well
cemented with micrite and spar. In some caves
however, the rock is extremely friable; petrologic
analyses of those samples showed the allochems to be
cemented by only a thin coating of circum-granular
sparry calcite crust. Cements seen in samples from
exterior ridge outcrops vary from marine phreatic to
vadose types, depending on location and allochem
composition. Rocks which are oblitic appear to be
cemented exclusively by equant spar; whereas
peloidal-bioclastic rocks tend to be cemented by
microcrystalline cements or by circum-granular crust
cements.

The majority of caves formed during oxygen
isotope substage Se. Only two known caves formed in
intertidal odlitic deposits, and that development was
probably nearly synchronous with build-up of the
odlitic eolian ridges. All other caves formed within
older peloidal and bioclastic eolianite deposits. The
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variability of petrology seen among samples from the
same eolianite ridge, as well as the variability between
ridges, and the onlap and overlap of eolianites deposit-
ed during different sea-level highstands, suggests that
random surface sampling and morphostratigraphy
alone are insufficient to reliably unravel the Quaterna-
ry history of Bahamian eolianites. Only detailed
sampling along measured sections on both faces of the
ridges, and where available, sampling from caves
within the ridges is likely to lead to successful under-
standing of the geology of the Bahamian islands.

INTRODUCTION

Vogel and others (1990) speculated that
evidence of past sea-level highstands of the late
Pleistocene should be reflected in the petrology of the
eolianite sand bodies and the walls of the flank margin
caves (Mylroie and Carew, 1990) in the interior and
coastal areas of San Salvador Island and elsewhere in
The Bahamas. There should be diagenetic markers
within the carbonate grains and cements that reflect
different sea-level highstands and consequent platform
flooding. Earlier study of the Pleistocene eolianites of
San Salvador had revealed some of the variability
within and among ridges (Hutto and Carew, 1984), but
it was thought that a more thorough examination of
some of the deposits, there and elsewhere, might
provide information that could help to determine the
details of the diagenetic environment(s) to which they
were subjected. The purpose of this study then was to
follow-up on Vogel and others (1990) by analyzing in
detail the wall rock from a few select horizontal
dissolution caves to determine whether a phreatic



fresh-water diagenetic signature could be identified,
and to search for evidence of marine phreatic and
mixing-zone diagenesis in Pleistocene eolian
calcarenite ridges. To those ends we conducted
detailed quantitative petrologic analyses of oriented
hand samples of Pleistocene eolianites and cave wall
rocks, and conducted x-ray diffraction analyses of
selected samples.

Methods

Point counts were conducted on a total of 249
thin sections that were produced from oriented sam-
ples; fifty-one (51) were from flank margin caves on
New Providence, San Salvador, and Long islands; and
198 were from eolianite ridges on South Andros, New
Providence, San Salvador, Long, and Great Inagua
islands (Figure at front of this volume). Samples
collected on South Andros, New Providence, Long,
and Great Inagua islands were not systematically
collected along measured sections. Samples collected
from San Salvador Island were recovered along
detailed measured transects. Samples were impregnat-
ed with blue-tinted Petropoxy 154 in order to deter-
mine the amount and character of porosity.
Twenty-two samples were analyzed by XRD to
determine their mineralogic composition.

RESULTS
Cave Samples

Most of the allochems seen in these cave
samples were assigned to one of three general catego-
ries: odlitic, non-odlitic (bioclasts, peloids, etc.), and
orthochem (micrite). All of the cave samples fell into
the non-odlitic category as they are largely peloidal
and bioclastic, and odids are very rare (Table I).
Vogel and others (1990) reported some odids in the
wall rock of some caves on San Salvador, but reassess-
ment of those thin sections has revealed that the
allochems previously identified as 0dids are transverse
sections of serpulid worm tubes or vermetid gastro-
pods. While some cave wall samples contain little
cement, most cave samples are well cemented with
micrite, and in a few cases by spar cement (Tablel),
but a few caves exhibit more eclectic cementation
discussed below.

Samples taken along a measured transect from
the Aeolian Room, the main chamber of Lighthouse
Cave (Figure 1), and a room toward the back of the
Waterloop, contain a variety of cementation styles.
Samples collected within the Waterloop, and currently
in contact with marine water, have pronounced
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isopachous cements. The porosity of these samples is
very low. In contrast, samples collected just above
mean sea level have very reduced isopachous cements
and noticeably greater porosity. The vertical distance
between those sample sites is only 0.67 meter.
Samples collected still farther up this measured section
contain fresh-water vadose calcite cements, especially
circum-granular crusts (Moore, 1989, p. 183, fig.
7.4A) on the allochems. Samples recovered at ceiling
level contain fresh-water vadose cements and still
greater porosity.

The Aeolian room of Lighthouse Cave exhibit-
ed a slightly different cementation pattern. The lowest
sample, recovered from an area which is usually dry,
but may flood during unusually high tides or storm
surges, has reduced isopachous cements with a pro-
nounced fringe of dog-tooth spar. Above the mean
high tide stain, the samples have no isopachous
cement, but instead have circum-granular spar crusts
and high porosity. Ceiling samples here contained
some fresh-water vadose cements. George Storr’s
Cave (Figure 2) and Garden Cave contain virtually the
same cement distribution as the samples collected in
the Waterloop of Lighthouse Cave, except that the low
samples from George Storr’s and Garden Cave do not
contain isopachous cements. The lower portions of
these caves are dry and do not flood, as they do not
extend below + 1 meter elevation.

The wall rock of Reckley Hill Pond Cave
(Figure 3) is extremely friable and gypsum crystals
occur low on the ceiling and walls of this cave. The
wall rock is cemented by a thin circum-granular crust
of calcite on the grains. The isotopic composition of
that gypsum indicates bacterial mediation of its forma-
tion (Bottrell, and others, this volume).

XRD data was obtained on samples from five
San Salvador caves, two New Providence caves, and
from one cave on Long Island. The sample from the
Waterloop in Lighthouse Cave that is currently in
contact with marine water contained 5.12% dolomite.
The sample taken 0.67 meter above that sample
contained no dolomite. Among the samples analyzed
from four other San Salvador caves, Emerald Cave,
Crescent Top Cave, Midget Horror Hole, and Pipe
Cave, only the Emerald Cave sample contained
dolomite (4.25%).

Samples from Salt Pond Cave, Long Island
contain 3.26% dolomite, and on New Providence
Island, samples from Bat Cave contain 4.90% dolo-
mite, and those from Harry Oakes cave contain 3.62%
dolomite. The presence of dolomite in these cave
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Table 2a Point count data (%) of ridge samples from San Salvador Island.

peloidal-bioclastic unconformably overlain by oélitic
deposits. Information about specific ridges is outlined
below.

samples is interpreted as evidence of marine influence
in the diagenetic environment in which the caves
formed. This is viewed as corroborative of the flank
margin model of mixed-water dissolution for cave
formation (Mylroie and Carew, 1990). No cave wall
rock samples contain aragonite cements.

San Salvador Ridges

Petrologic analyses of thirty samples collected
along a transect on the west-facing side of Dixon Hill
indicate that the ridge is peloidal-bioclastic from the
base almost to the top. The last few samples at the top
are a mixture of 06ids and peloids (Figure 4). In
contrast, samples taken from the east-facing slope have
been reported to be odlitic (Hutto and Carew, 1984;
Carew and Mylroie, 1985). The wall rock of Light-
house Cave, located within Dixon Hill, has a
peloidal-bioclastic composition similar to the samples
collected from the lower portion of the measured

Ridge Samples

Like the cave samples, the allochem composi-
tion of the 198 ridge samples from Great Inagua,
Long, New Providence, San Salvador, and South
Andros islands can be classified into three general
categories: odlitic, non-o6litic, and orthochems (Tables
2, 3, 4). Examination of these samples revealed four
common ridge types: peloidal-bioclastic, oélitic,
peloidal-bioclastic transitional upward to odlitic, and
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Table 2¢  Point count data (%) of ridge samples from San Salvador Island.
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section on the west side (Table 1a).

Samples collected from ridges along the east
coast of San Salvador, such as Crab Cay, The Thumb,
Left Breast Point, and The Bluff are primarily
peloidal, and nearly all contain no odids (Table 2).

Ridges located in the interior of the island
exhibit a variety of composition patterns. The
west-facing slope of South Granny Lake ridge (Figure
5) is a mix of peloids and o0ids at the base and
becomes more odlitic toward the top, whereas the
east-facing slope (Figure 6) is odlitic at the base
overlain by about two meters of peloidal-bioclastic
deposits that grade up into dominantly odlitic sands.
Observation Tower ridge, located to the west of South
Granny Lake, has an east-facing slope that is largely
a mix of 0dids and peloids, with peloids dominant,
from lake level up to about +5 meters. From about
+6 meters upward to just below the ridge crest, 0dids
are more abundant than peloids. Near the top the
samples are dominantly ooblitic (Figure 7).
On-the-other-hand, the west-facing side of the ridge,
from the parking lot level upward to the top, is
dominantly odlitic.

Samples taken along a transect up the
west-facing side of Reckley Hill have been largely
diagenetically altered to micrite (Figure 8). Those few
allochems that can be identified are odids and peloids.
Samples taken along a measured section at The Gulf
are largely peloidal, with odids as a significant fraction
from about one to three meters above sea level.

Ridge samples are cemented by fresh-water
vadose or phreatic spar cements, or by micrite that is
probably of diagenetic origin. No ridge samples from
San Salvador contain aragonite cement.

Ridges on other islands

Samples taken from eolian ridges on South
Andros Island are largely odlitic, or are composed of
a mixture of odids and peloids (Table 3). Non-0did
bearing eolianites are unknown on South Andros.
Most of the eolianites are cemented by equant spar
cements, with a lesser number of micrite cemented
samples. No samples are cemented by aragonite
(Table 3). Lack of detailed sampling along transects
of course precludes our ability to determine whether
there are any vertical or lateral composition changes
similar to those seen on San Salvador Island.

Samples from eolianitess on Long, Great
Inagua, and New Providence islands (Table 4) show
compositions and cementation styles similar to those
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seen elsewhere, but their usefulness in fully document-
ing the development of eolianite ridges there suffers,
as we now know, from lack of coordination to mea-
sured sections. Samples from New Providence exhibit
a particularly diverse suite of allochem compositions
and diagenetic conditions; and it is only on that island
that we have encountered odlitic eolianites overlain
unconformably by another odlitc eolianite. = No
aragonite cements have been seen in any of the
samples.

DISCUSSION AND CONCLUSIONS

We can recognize four types of Pleistocene
eolianite ridges, those that are o6litic throughout, those
that are peloidal-bioclastic throughout, and those that
are peloidal-bioclastic low and either grade upward
into o6id-dominated deposits or are unconformably
overlain by oblitic eolianite. On San Salvador, large
volume production of odlitic eolianites seems to be
restricted to the highstand of sea level during substage
Se.

The fact that nearly all horizontal dissolution
caves are developed in peloidal-bioclastic eolianites,
while nearly all vertical pit caves penetrate only
o0id-dominated eolianites (Pace, and others, this
volume) suggests that the odid-dominated eolianites
that were deposited during the highstand of sea-level
associated with oxygen isotope substage Se, buried
underlying peloidal-bioclastic eolian deposits that had
formed during earlier highstands of sea level. Consid-
ering the isostatic subsidence of the Bahamas and the
published information on late Pleistocene sea-level
highstand elevations and times, the underlying
peloidal-bioclastic eolianites were probably deposited
during the highstands of sea level associated with
oxygen isotope stages 7 and/or 9.

In some places peloidal-bioclastic eolianites
can be seen to be unconformably overlain by odlitic
eolianites (e.g. Watling’s Quarry and Owl’s Hole on
San Salvador Island, Carew and Mylroie, 1985, and
Stowers and others, 1989; Bahamas West Cave on
New Providence Island, Mylroie and others, 1991, and
Carew and others, 1992). The unconformity at those
locations is marked by a paleosol. At all other locali-
ties, no demonstrable unconformity can be recognized.
This may be because: (1) the paleosol between the
eolianites is only exposed if dissolution of a cave
penetrated far enough upward to intersect the paleosol,
or vertical dissolution features extended far enough
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Table 3. Point count data (%) from ridge samples from South Andros Island.

downward to penetrate the paleosol, or roadcuts or
quarries cut deep enough to intersect and penetrate the
paleosol (Figure 9). (2) The paleosol was removed by
erosion before deposition of the overlying unit, as seen
at Grotto Beach on San Salvador (Carew and Mylroie,
1985; Stowers and others, 1989). (3) Because of the
discontinuous nature of the deposition of these
eolianites, some locations may accurately record the
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depositional events as two separate and recognizable
units, and others may have composite paleosols that
record the same time interval, but do not permit
recognition of those events (Carew and Mylroie,
1991).

While there seems to be a common pattern of
peloidal-bioclastic eolianites overlain by odlitic
eolianites throughout the Bahamas, allochem composi-
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Table 4. Point count data (%) from ridge samples from Great Inagua, Long, and New

Providence islands.

tion cannot be used to assign with certainty either
peloidal-bioclastic or odlitic eolianites to a stratigraphic
position where no vertical relationship can be demon-
strated, such as those at The Bluff, Crab Cay, The
Thumb, etc. on San Salvador. In addition, there are
localities where peloidal/odlitic eolianites
unconformably overlie another eolianite of similar
composition (e.g. Collins Avenue roadcut and Hunt’s
Cave quarry, New Providence). Also, two of the
authors (Carew and Mylroie) have observed Holocene
(North Point Member) peloidal eolianites, up to 30
meters high, that entomb Pleistocene (Grotto Beach
Formation) odlitic eolianites on Long Island in precise-
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ly the same fashion suggested here for the Pleistocene
deposits. Therefore, use of morphostratigraphy to
determine the relative stratigraphic position of
eolianites in the Bahamas is bound to yield a flawed
understanding. Mantling of one eolianite by another
is variable both along a dune’s length, and from one
dune to another. So, spot sampling and morphologic
relationships seen in aerial photographs will not lead
to an accurate picture of the relationships between
deposits. Only detailed sampling along measured
sections combined, where possible, with data obtained
from caves developed within ridges will yield satisfac-
tory results.



height in meters

Reckley Hill

San Saivador Island, Bahamas

Despite an exhaustive search for a diagenetic
signature that would indicate inundation of some of
these eolianites by marine water during the peak of the
substage Se highstand, we have been unable to discern

any reliable diagenetic indicator of that event. White

o = fthachem and White (1991) reported evidence of Holocene
% ZBiciese marine cementation in both Holocene and Pleistocene

eolianites exposed to marine conditions today. How-
ever, they found evidence of marine cements in only
57% of their samples, and in many of them it was
confined to a few needles in intragranular pores. The
failure to find similar evidence of marine cementation
from the highstand of substage Se suggests that a
marine signature like that reported by White and White
(1991) is surficial and ephemeral.

The cave data indicate that the diagenesis that
resulted in the dissolution of such large voids has
erased all evidence of previous diagenetic signatures.
Among the cave samples there are distinct differences
in cementation and porosity dependent on position
within the caves. However, those differences are
more likely due to the sample proximity to sea level
and marine water today. Only the occurrence of small
amounts of dolomite in some of the cave samples can
be seen as indicative of marine influence in rock
diagenesis.

In conclusion, Pleistocene eolianite allochem
composition and diagenetic condition cannot be

reliably used to determine the correct stratigraphic
position for the eolianites in the absence of demonstra-
ble overlapping relationships seen in the field.

sea level
Figure 8. Diagrammatic representation of the measured saction on the west-facing

slope of Reckley Hill showing sample localions and rock type.

PIT CAVE

COMPOSITE
PALEOSCL

>

PELOIDAL-BIOCLASTIC DUNE

FLANK MARGIN CAVE

Figure 9. Diagram illustrating relationships between eolianites, paleosals, flank
margin caves, pit caves, and man-made rock cuts.
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While it appears that the highstand of sea level
associated with substage Se was the time of major odid
deposition in eolianites throughout the Bahamas, both
older (Hunt’s Cave quarry, New Providence, Table 3)
and younger (Joulters Cays) odid-dominated deposits
exist. Further, diagenetic alteration of these
Pleistocene deposits, both cementation and secondary
porosity, is so variable that diagenetic condition is not
a reliable indicator of age or stratigraphic position.
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